


Valorization of Kitchen Waste through Biogas Production for Sustainable Municipal Solid Waste and Sludge Management

Cigdem Yangin-Gomec¹, Izzet Ozturk²

¹ Environmental Engineering Dept., Istanbul Technical University, Istanbul, Turkey, <u>yanginci@itu.edu.tr</u> ² Environmental Engineering Dept., Istanbul Technical University, Istanbul, Turkey, <u>ozturkiz@itu.edu.tr</u>

OBJECTIVE

• to present an energy efficient municipal wastewater treatment involving anaerobic co-digestion of primary sludge (PS) & organic fraction of municipal solid waste (OFMSW) by the integration of kitchen waste (KW) for better valorization of these organic-rich residuals.

INTRODUCTION

> In order to mitigate the consumption of large amounts of energy & resources \Rightarrow great importance to find sustainable ways for an effective management of different types of residuals arising from residential areas such as KW & municipal solid waste (MSW) along with PS produced at wastewater treatment plants (WWTPs).

> KW \Rightarrow mostly organic waste (i.e., consists of fruits & vegetable wastes, waste oils or greases & cooking waste from food processing) with high putrefaction characteristics.

> MSW \Rightarrow several types of wastes (e.g., org. matter from food waste, paper & packaging wastes, yard waste, plastics, metals, textiles, and other miscellaneous items) continuously produced in high quantities.

ightarrow MSW \Rightarrow largest component of which is organic matter makes solid waste management a major environmental concern around the world.

> Usage of disposers \Rightarrow as a sustainable source reduction & waste minimization alternative by mixing the bulk of the OFMSW with domestic wastewater before reaching the sewage and ultimately WWTP.

Separation of a considerable fraction of the organic-putrid food waste (FW) with substantial water content out of the entire MSW stream is possible.

> MSW moisture & leachate amount \Rightarrow reduced at a great extent.

> Primary Sludge (PS) \Rightarrow also comprised mainly of settled organic materials from raw sewage & food waste (dominated by proteins, carbohydrates & fats).

> Anaerobic digestion (AD) \Rightarrow most sustainable & feasible method for minimization & reuse of these residuals (efficient volume reduction, stabilization, biomethane provision from carbonaceous compounds & energy recovery from biogas).

> Sewage sludge occurring at municipal WWTPs \Rightarrow one of the most appropriate co-substrates for co-digestion with OFMSW.

> AD \Rightarrow allows stabilization of different large waste streams in the same reactor without any considerable additional investments [cost-effective & energy self-sufficient WWTPs].

> The penetration rate of KW (% of households with disposer installation over total households in a certain area) \Rightarrow directly affects annual CH₄ production.

> Although no significant impacts on water consumption, sewerage system & WWTPs at a small scale \Rightarrow additional capital & operational costs at large-scale

> Total energy (electricity & heat) generations from the produced biomethane $\Rightarrow \sim 152,500$ kWh (by a KW penetration rate of 40%).

- For energy consumption per unit of treated wastewater (~0.5 kWh/m³) \Rightarrow almost all daily energy need is covered.
- > Potential total energy [megawatt; MW] \Rightarrow 6.36 with & 3.20 without KW.

Increased KW penetration rates => lead to subsequent improvement in sludge & biogas depending on treatment processes at WWTPs.

➢ With a penetration rate of 90% ⇒ Daily total energy up to ~11 MW with an improved biogas (due to COD&TSS of influent increases by ≥ 50%).

Characteristics & Energy Potential of Modified Municipal WWTP

Description	Unit	Without KW	With KW ^b
Population	PE	1,000,000	
Wastewater production	L/PE.d	250	~258 ^a
Influent flow-rate (Q _{inf}) ^a	m³/d	300,000	
Chemical Oxygen Demand (COD)	mg/L	370	620
Total Suspended Solids (TSS)	mg/L	200	425
TSS removal in primary tank ^c	%	75	
COD removal in primary tank ^c	%	50	
Solids load (TS% of thickened PS)	kg/d	95400 (TS%=6)	
Biogas Production & I	Energy	Equivalence	
Total biogas flow-rate (Q _{gas})	m³/d	16395	32600
Methane flow-rate (Q _{CH4}) ^d		9590	19100
Electricity energy (N _{electric}) ^e	kW/d	1400	2780
Heat energy (N _{heat}) ^e		1800	3575
Total energy (N _{total}) ^f		3200	6355
^a By integrating disposers, daily water consumption (250 L/PE.d) in generation is 1.5 kg, FW portion of MSW is 50%, TS content of F ^c With polyelectrolyte; ^d CH ₄ content of total biogas is 65%, $N_{electric}=Q_{CH4}x10x0.35$, $N_{heat}=Q_{CH4}x10x0.45$; ^f $N_{total}=N_{electric}+N_{heat}$.	W is 28%, grou	ind part of FW is 80%, pe	enetration rate is 40%
 Campuzano, R., González-Martínez, S. (2016). Characteristics of the org <i>Waste Management</i>, 54, 3-12. Crutchik, D., et al. (2023). Integrating food waste management into urbar <i>Environmental Management</i>, 345, 118517. Dereli, R.K., Ersahin, E., <u>Gomec, C.Y.,</u> Ozturk, I., Ozdemir, O. (2010). Co Sludge at a Municipal Treatment Plant in Turkey, <i>Waste Management & Rese</i> Gurung, K. et al. (2018). Unit energy consumption as benchmark to select er (WWTPs): a case study of Mikkeli WWTP, <i>Environ. Process.</i>, 5, 667–681. Iacovidou, E., et al. (2012). The household use of food waste disposal units a <i>Science & Tech.</i>, 42, 1485-1508. <u>Yangin-Gomec, C.</u>, Sárvári Horváth, I., Martín, C. (2023). Energy Production <u>Yangin-Gomec, C.</u>, Agnihotri, S., Ylitervo, P., Sárvári Horváth, I. (2023). Ass for an Effective Valorization of Food Waste and Wheat Straw, <i>Energies</i>, 16(1), <u>Yangin-Gomec, C.</u>, Koyuncu, I., Ozturk, I. (2013). Integrated Municipal Waste 	panic fraction of m n wastewater treat o-Digestion of the <i>parch</i> , 28(5), 404-4 nergy positive retro as a waste manage n from Biomass Va sessment of Microl , 55.	tment: Economic and environm Oganic Fraction of Municipal 10. ofitting strategies for Finnish Wa ement option: A review, <i>Critical</i> lorization, <i>Energies</i> , 16(11), 430 bial Diversity during Thermophil	nental impacts, <i>Journal of</i> Solid Waste with Primary stewater Treatment Plants <i>Reviews in Environmental</i> 00. ic Anaerobic Co-Digestion /astes, Treatment Sludge,

WWTPs in case of long-term KW penetration.

CONCLUSION

 Sustainable waste management especially in metropolitan cities like Istanbul ⇒ provided through disposer usage by diverting food waste from landfill.

• Daily methane gas production $\Rightarrow \ge 30,000 \text{ m}^3$ by KW with a penetration rate of $\ge 90\%$.

About one third less daily CH₄ & total energy generations

 \Rightarrow without KW integration.

• Substantial portion of energy consumption of WWTPs \Rightarrow covered by the improvement in biomethane recovery with the OFMSW feeding to co-digester with PS.

