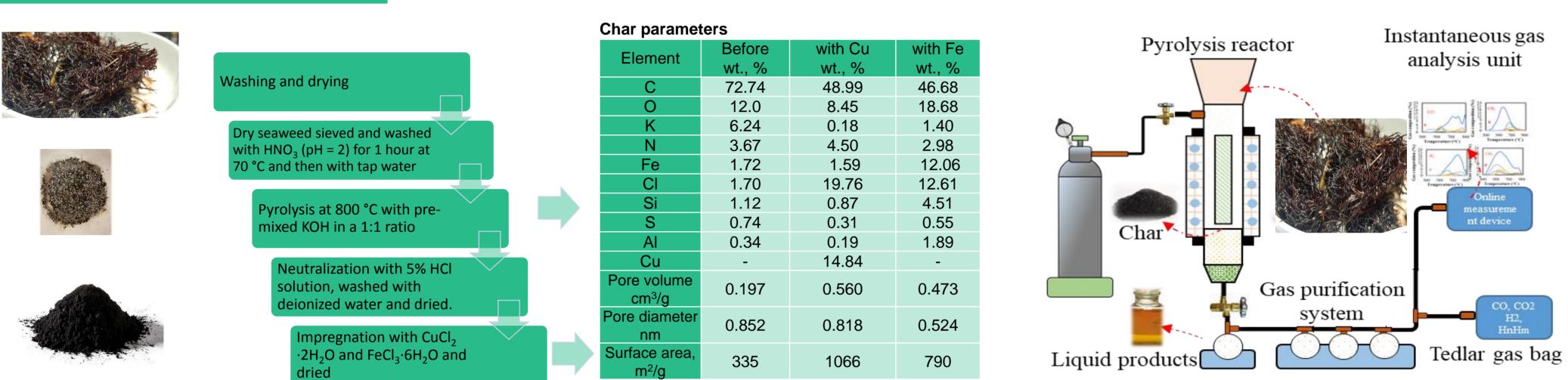
Marine biomass pyrolysis over metal impregnated biochar based catalyst


J. Eimontas, K. Zakarauskas, N. Striūgas*

*Laboratory of Combustion Processes, Lithuanian Energy Institute, Kaunas, Lithuania, nerijus.striugas@lei.lt

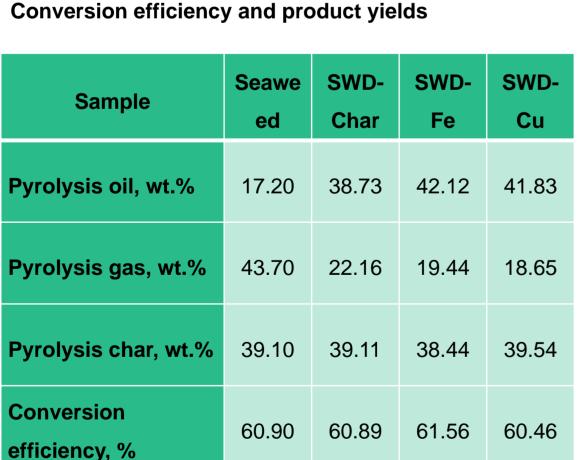
Abstract

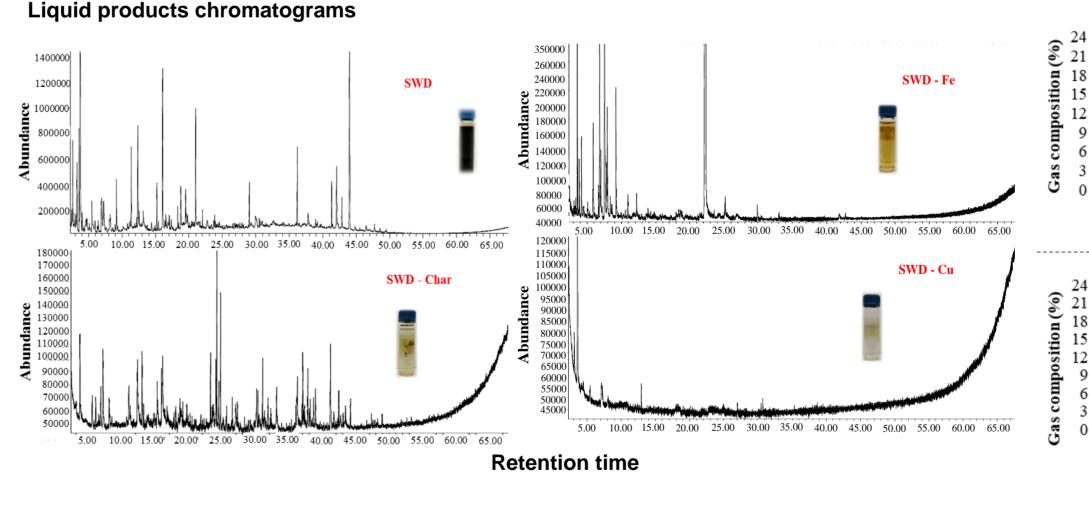
This study aims to investigate a newly prepared seaweed biochar-based metallized catalyst and its application for a catalytic pyrolysis. The pyrolysis process was carried out in a laboratory-scale pyrolysis reactor at the temperature of 700 °C with a feedstock load of 250 g. The GC/MS analysis of the liquid products revealed, that catalyst significantly increase the formation of liquid products up to 42.12 wt.% with the seaweed sample. The most common compounds in the seaweed liquid products are variously substituted phenolic (19.47%) and aromatic (21.47%) compounds, some acids (11.12%), and alcohols (7.46%). Moreover, copper-impregnated catalyst increased the amount of toluene in one of the batches up to 84.24% showing potential for this solvent recovery.

Materials and methods

Feedstock Parameters: C - 46.93 ± 0.05 wt.%, H - 4.73 ± 0.06 wt.%, N - 4.13 ± 0.14 wt.%, S - 5.13 ± 0.23 wt.%, CI - 0.05 ± 0.01 wt.%, O (diff.) - 29.61 \pm 0.06 wt.%, W - 0.60 \pm 0.01 wt.%, VM - 58.30 \pm 0.19, FC - 32.23 \pm 0.15 wt.%, Ash - 8.87 \pm 0.04

Process Parameters: Atmosphere - N₂ with a 90 ml/min flow rate; Feedstock load - 250 g; Heating rate - 30 °C/min; Pyrolysis temperature - 700 °C;


Gaseous products composition


21 18

15

 CH_4

Products distribution and conversion efficiency

composition (%) 450 450 600 Temperature (°C) Temperature (°C) (%) uoitisoduu 18 15 12 9 6 15 12 Seaweed with non-impregnated char Seaweed with Char-Fe

Conclusions

wt.%, LHV - 16.51 ± 0.07 MJ/kg.

The GC/MS analysis of the liquid products revealed, that catalyst significantly increase the formation of liquid products up to 42.12 wt.% with the seaweed sample. The most common compounds in the seaweed liquid products are variously substituted phenolic (19.47%) and aromatic (21.47%) compounds, some acids (11.12%), and alcohols (7.46%). Moreover, copper-impregnated catalyst increased the amount of toluene in one of the batches up to 84.24% showing potential for this solvent recovery. Based on the investigated results, char-based metallized catalyst significantly increased amounts of valuable products. It is clear that the pyrolysis process is a feasible and promising process for the marine biomass wastes utilization, obtaining additional higher-added value and energy products, contributing to the creation of a circular economy.

