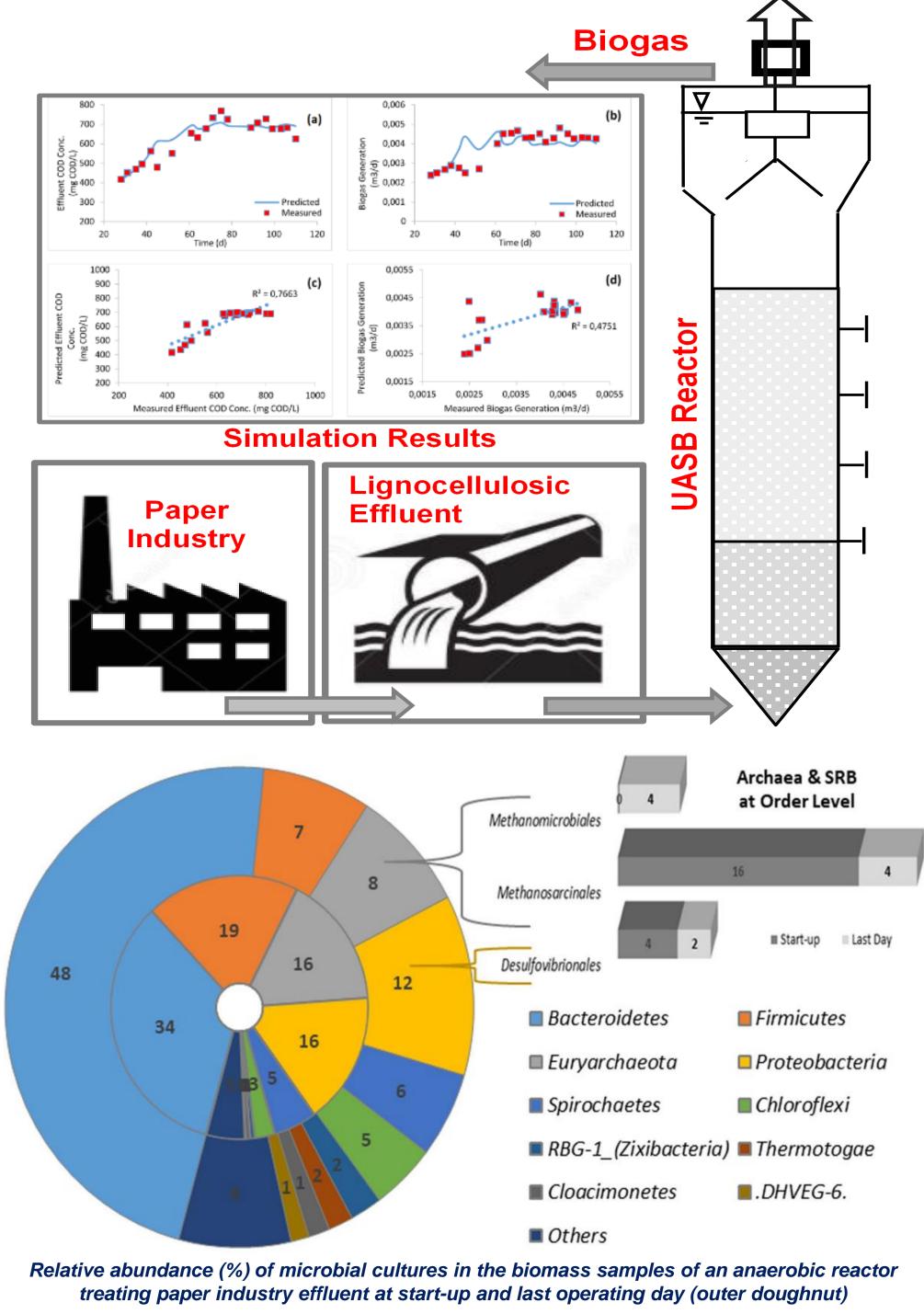


Biomethane Potential of Lignocellulose-Rich Effluents during Anaerobic Treatment

Cigdem Yangin-Gomec¹

¹ Environmental Engineering Department, Istanbul Technical University, Istanbul, Turkey, yanginci@itu.edu.tr


OBJECTIVE

• evaluate biomethane potential through anaerobic treatment of lignocellulose-rich effluents from paper industries based on the findings of different lab-scale anaerobic reactors operated at different conditions.

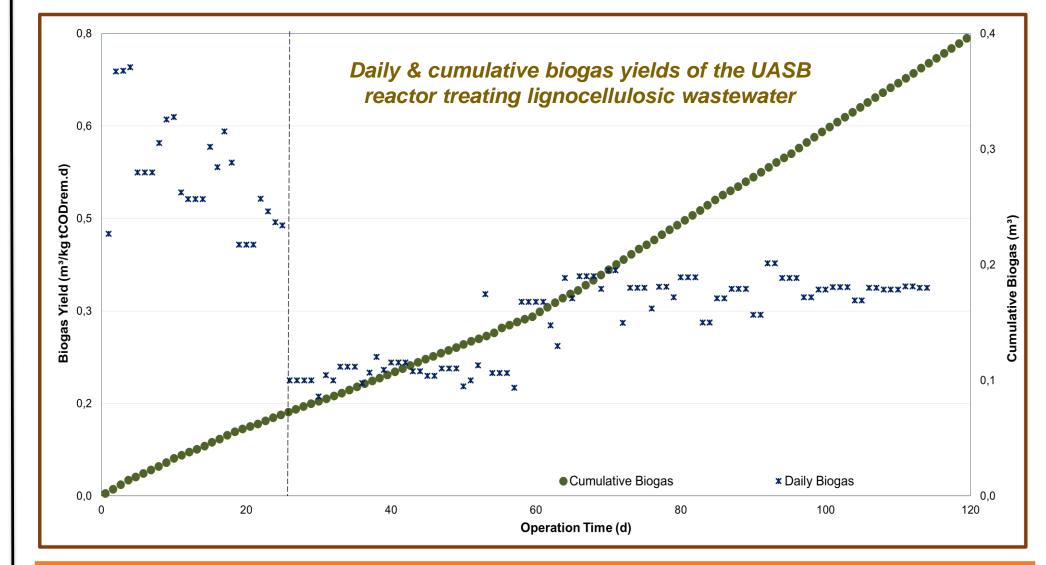
INTRODUCTION

> Turkish paper & cardboard products industry $\Rightarrow \sim 2\%$ world paper production capacity. > Paper products consumption \Rightarrow > 6 million tons (16th major consumer goods market).

> High water demand during paper production stage \Rightarrow 3rd largest wastewater producer.

> Many organic & inorganic pollutants \Rightarrow environmental problems such as DO depletion, toxicity, color & turbidity.

 \succ Lignocellulose-rich effluents with high organic contents \Rightarrow renewable energy sources (e.g., biogas, biodiesel, bioethanol, etc.) with appropriate treatment technologies such as anaerobic reactors.


> Although the competition between sulfate reducers & methane producers for available C & H sources leads to stoichiometrically reduced biogas \Rightarrow anaerobic biotechnology plays important role in industrial wastewater treatment for renewable energy generation.

RESULTS & DISCUSSION

- > High-rate anaerobic systems like upflow anaerobic sludge bed (UASB) reactors \Rightarrow indicated effective treatment & satisfactory biomethane production while treating lignocellulosic wastewaters.
- \succ Cumulative biogas production in an UASB reactor \Rightarrow 160-380 L per 1 kg of COD removed [~25 kWh total energy (electricity+heat) generation per 1 m³ of wastewater treated] at mesophilic (35 °C) condition.
- > Influent & effluent COD \Rightarrow 26129±2482 & 638±117 mg/L, respectively with more than 95% removal.
- \succ In a batch anaerobic study \Rightarrow COD decreased from ~10000 to 580 mg/L with a removal of 94% at a 70-d incubation period (cumulative methane yield of 370 L per kg of total COD removed) at mesophilic (35 °C) condition.
- \succ Net methane yield \Rightarrow 490 L per 1 kg of volatile solids (VS) fed at thermophilic (55 °C) batch study.
- \succ Degradation of the hemicellulose & cellulose contents (i.e., ~60%) by the phyla Bacteroidetes, Firmicutes, Proteobacteria, Spirochaetes & Thermotogae whereas Euryarchaeota domain consist of the methanogens crucial for methane production (Yarsur, 2021).

Mass balance of organic compounds [adapted from Speece (1996)]

C Utilization paths	Load g/d ^a	% of Input C
Input C	13	100

	-	
Output C		
Effluent COD ^g	0.3	2.0
Sulfate (SO ₄ ²⁻) reduction ^h	0.2	1.4
Methane generation (CH _{4gas}) ⁱ	5.1	39
Biomass yield ^e	1.6	12
Total Output C ^f	6.5	55

CONCLUSION

 Biomethane potential through anaerobic treatment of lignocellulose-rich effluents from paper industries \Rightarrow revealed significant contribution to sustainable and feasible waste management and energy recovery.

REFERENCES

• Speece, R.E. Anaerobic Biotechnology for Industrial Wastewaters. USA: Archae Press (1996). • Yangin-Gomec, C., Yarsur, E., Ozcan, O.Y. Energy recovery during anaerobic treatment of lignocellulosic wastewater with dynamic modeling and simulation results. Biomass Conv. Bioref. (2021). • Yangin-Gomec, C., Yarsur, E. Coexistence of sulfate-reducing and methane-producing populations in upflow anaerobic sludge bed reactor treating lignocellulosic effluent with material balance. Int. J. Environ. Sci. Technol. (2022).

• Yarsur, E., Biogas recovery during anaerobic treatment of lignocellulose-rich pollutants with high sulfate content: an investigation via innovative applications. Istanbul Technical University, Dissertation (2021).

