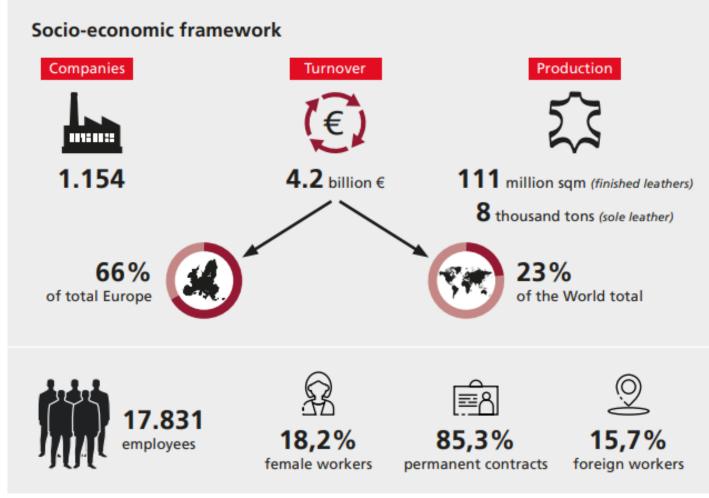
Valorisation of metal contaminated biomass by hydrothermal liquefaction: The case study of tannery sludge

Roberto Solimene^{a,*}

"Istituto di Scienze e Tecnologie per l'Energia e la Mobilità Sostenibili, Consiglio Nazionale delle Ricerche, Piazzale V. Tecchio 80, 80125 Napoli, Italy

Francesca Di Lauro^{b,c}, Marco Balsamo^b, Maria Laura Alfieri^b, Paola Manini^b, Piero Salatino^c, Fabio Montagnaro^b

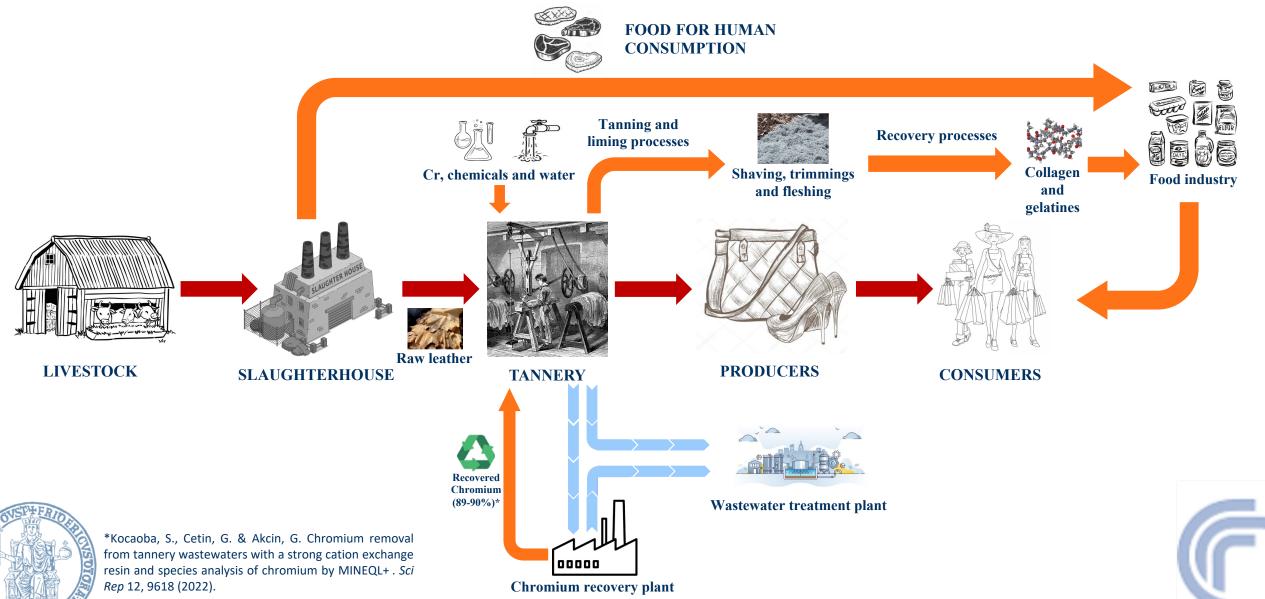
^bDipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, 80126 Napoli, Italy ^cDipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Piazzale V. Tecchio 80, 80125 Napoli, Italy



Istituto di Scienze e Tecnologie per l'Energia e la Mobilità Sostenibili

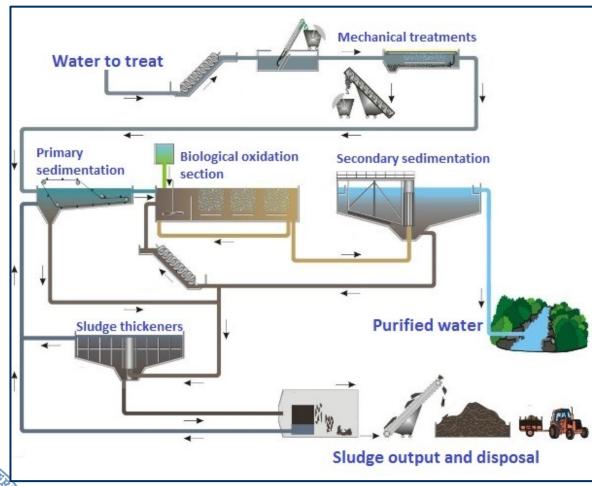
The Italian tanning industry

Italy is an important supplier of leather with a 66 and 23% share of the European and world production



Italian tannery companies statements about leather sustainability:

- The material is a waste by-product of the food industry (defined as ABP Animal by-products by EU Reg. 1069/2009), that is recovered by tanneries, thus avoiding the disposal of such material in landfills as waste.
- 2) Its use is an alternative to synthetic, fossil-derived, non-renewable, and poorly biodegradable materials.
- 3) It is a pure 'bio-based' material by nature, consisting of at least 85% collagen, a 100% biodegradable organic material.


[1] UNIC Sustainability Report 2022

Leather manufacturing process

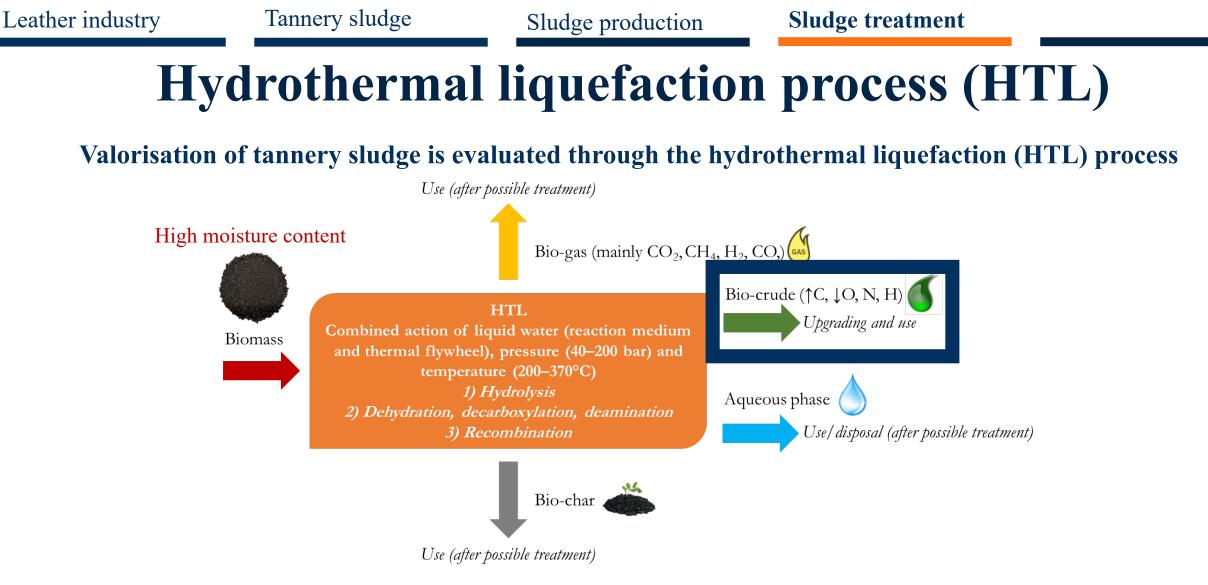
Wastewater treatment plant

Tannery sludge is the residual material deriving from the treatment of tanning wastewaters

The purification process of this industrial wastewater, produces a tannery sludge with high concentration of Cr(III), generally stored in authorised landfills.

Due to the high content of Cr(III) in tannery sludge, special attention must be paid to limit/avoid the oxidation of Cr(III) to Cr(VI), extremely harmful for the environment and human health.

Sludge management


	E.W.C. CODE	Sewage sludge is a waste regulated in Italy by the Legislative Decree 152/06 including all the related disposal, treatment and transport activities.
E.W.C. code Description of the E.W.C. code		
	190805	Sludges from treatment of urban wastewater
	190811*	Sludges containing hazardous substances from biological treatment of industrial wastewater
	190812	Sludges from biological treatment of industrial wastewater other than those mentioned in 190811
190813*Sludges containing hazardous substances from o treatment of industrial wastewater		Sludges containing hazardous substances from other treatment of industrial wastewater
	190814	Sludges from other treatment of industrial wastewater other than those mentioned in 190813

Article 1(a) of Directive 75/442/EEC on waste and Article 1(4) of Directive 91/689/EEC on hazardous waste. Hazardous wastes are marked with *.

In the circular economy perspective, the valorisation of the organic content of TS to produce energy vectors is a promising strategy to overcome the abovementioned issues ("Sludge-to-Energy (StE)" strategy).

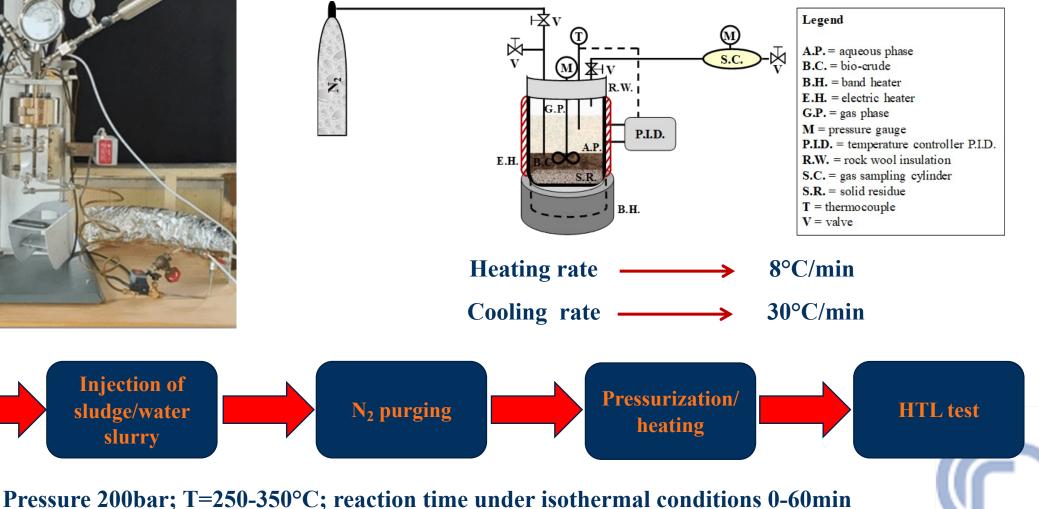
Direct combustion, gasification and anaerobic digestion risk releasing heavy metals back into the environment. Alternatively, thermochemical conversions such as pyrolysis or hydrothermal liquefaction offer significant advantages in terms of the segregation of metals into a relatively inert and compact solid phase while producing a bio-crude for bioenergy production.

Drying and

grinding of

sludge

Tannery sludge


Sludge production

Sludge treatment

Lab-scale apparatus for HTL tests

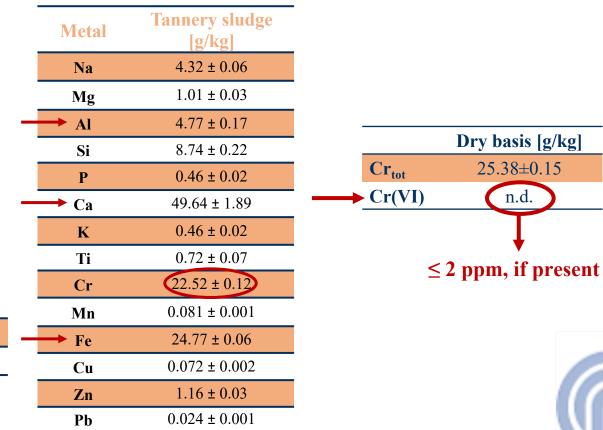
500 mL batch reactor

Leather	industry	
---------	----------	--

Sludge treatment

Tannery sludge properties

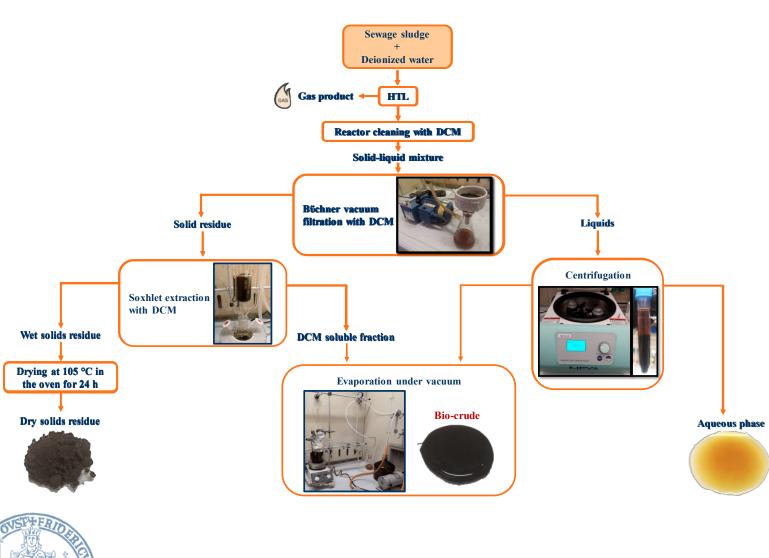
- Proximate analysis
- Ultimate analysis
- Higher heating value (HHV)
- Metal determination
- Total Cr content
- Cr(VI) content


→by TGA701 LECO thermobalance (UNI 9903/ASTM D5142 references standards)

- \rightarrow by element analyser LECO CHN628 (ASTM reference standard D5373)
- \rightarrow by Mahler bomb using ASTM D5865
- →by Inductively Coupled Plasma Mass Spectrometry ICP-MS (EPA 3052 reference standard)

 \rightarrow by atomic absorption spectroscopy (AAS)

→by UV-Vis spectrophotometric method (EPA 3060A reference method)


		Tannery sludge			
		[% _{wt.}]			
		dry basis	wet basis		
\rightarrow	С	33.61	27.41		
	H	5.10	4.16		
	N	2.44	1.99		
	S	4.07	3.32		
	Cl	0.35	0.29		
	Ash	38.52	31.41		
Ĩ	Moisture		18.46		
→ Org	anic matter	61.47	50.13		
O (b)	y difference)	15.91	12.96		
Town owy aludae	HHV [MJ/kg]	14.	90 ± 0.31		
Tannery sludge	LHV [MJ/kg]	value calculated fr	om <i>HHV</i> * 13.	.62	
* <i>LHV</i> = <i>HHV</i> $\cdot n\Delta H$ where <i>n</i> represents the kg of water produced on kg of fuel, while ΔH is the latent heat of evaporation of H ₂ O, approx. 2.5 MJ/kg.					

Sludge production

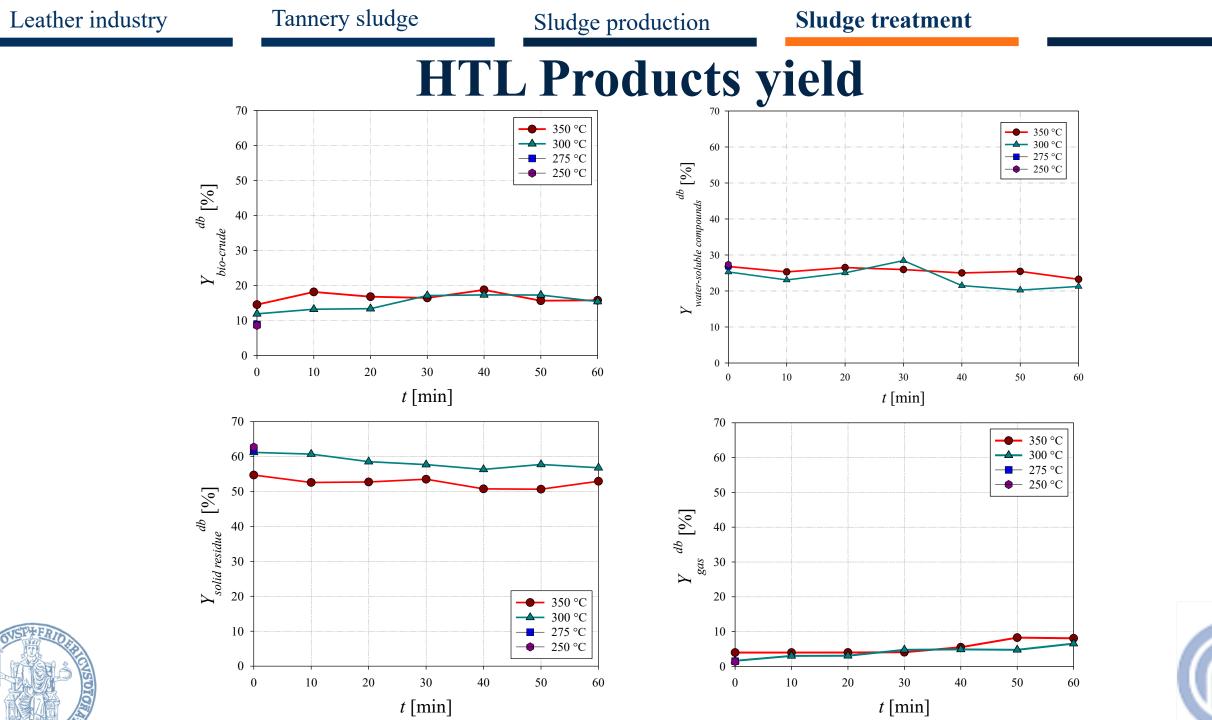
Sludge treatment

HTL products separation

Bio-crude and acqueous phase characterisation techniques:

- Higher heating value by Mahler bomb calorimeter
- Speciation of bio-oil and aqueous phase by H-NMR
- Speciation of metal content in the HTL products by ICP-MS and AAS

 $Y_{bio-crude}^{db} = \frac{m_{bio-crude}}{m_{biomass,db}} \cdot 100 \text{ or } Y_{biocrude}^{dafb} = \frac{m_{bio-crude}}{m_{biomass,dafb}}$


$$r_{solid\ residue}^{db} = rac{m_{solid\ residue_{db}}}{m_{biomass,db}} \cdot 100$$

$$Y_{gas}^{db} = \frac{m_{CO_2}}{m_{biomass,db}} \cdot 100 \text{ or } Y_{gas}^{dafb} = \frac{m_{CO_2}}{m_{biomass,dafb}} \cdot 100$$

 $Y_{water-soluble\ compaunds}^{db} = 100 - (Y_{bio-crude} + Y_{solid\ residue} + Y_{gas})$

$$ER = \frac{HHV_{bio-crude} \cdot Y_{bio-crude}^{db}}{HHV_0}$$

Sludge production

Bio-crude properties

Test	Y _{bio-crude} dafb (Y _{bio-crude} db) [%]	HHV [MJ/kg]	ER [%]	<u>Cl content</u> [%]	<u>S content</u> [%]
Cen-300-30	27.8	35.5	41.0	0.010 ± 0.001	3.32 ± 0.72
Cen-350-10	(17.2) 29.5 (18.2)	36.1	44.1	0.028 ± 0.003	3.34 ± 0.53

Advantages:

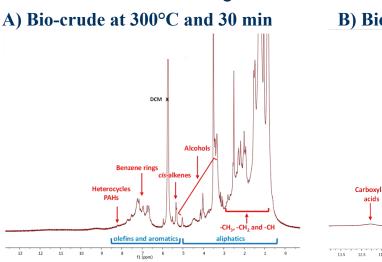
□ The obtained bio-crude has an HHV higher 2.9 times the tannery sludge

□ Through the HTL process a good energy recovery is achieved

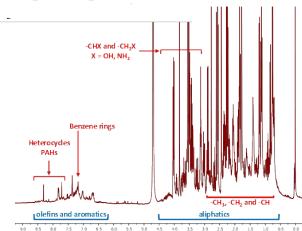
Drawback:

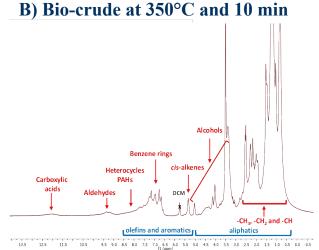
The issue is linked to the high sulphur content present in the bio-crude

Sludge treatment

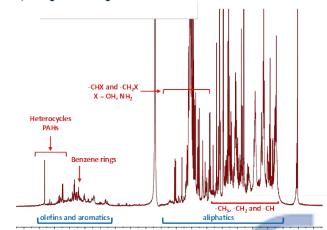

Products characterisation by ¹H-NMR

For both analysed bio-crude samples (A e B):

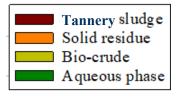

- Major contribution aliphatic protons
- Minor contribution of aromatic compounds and amines and alcohols protons.


For both analysed aqueous phase samples (C e D):

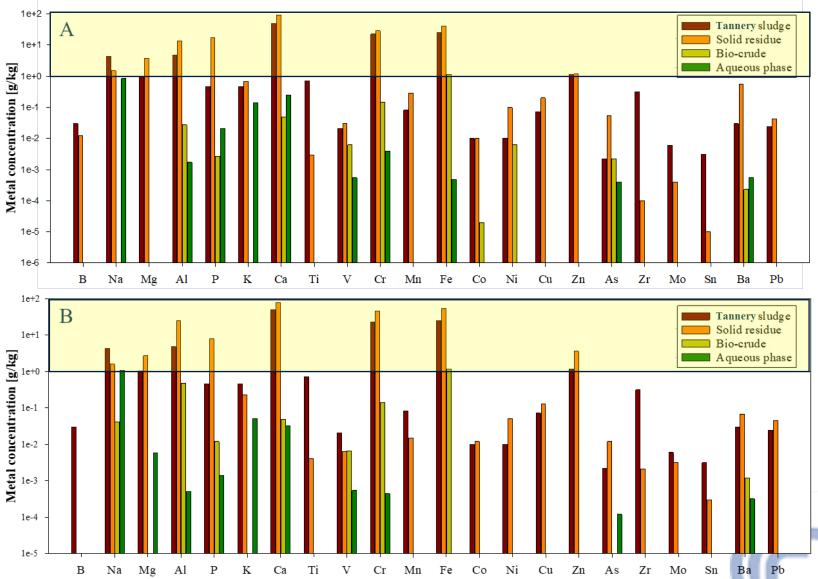
• Major contribution of aliphatic protons but an increasing of amines and alcohols protons



D) Aqueous phase at 350°C and 10 min



Leather industryTannery sludgeSludge productionSludge treatmentProducts characterisation byICP-MS analysis


Legend:

A) Bio-crude at 300°C and 30 min

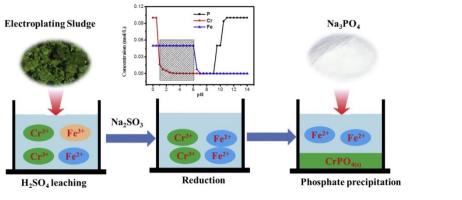
B) Bio-crude at 350°C and 10 min

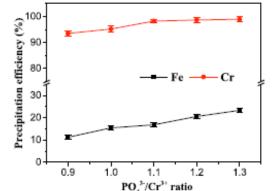
Inorganic elements after the HTL process are concentrated in the solid residue, with values in the bio-crude that is up to about 3 orders of magnitude lower with respect to the solid residue.

Chromium distribution in HTL products

	Tannery Sludge	Solid Residue	Bio-crude	Aqueous Phase
Cr [g/kg]	25.38	47.35	0.23	0.0005
Cr [g]	0.76	0.75	0.001	0.00013
Cr(VI)	n.d.	n.d.	n.d.	n.d.
Cr recovery [%]		98.3		

GYST#FRIDER USOTO


If present, the Cr(VI) content in the solid residue, bio-crude and aqueous phase produced during HTL test would not exceed 0.5 ppm.


At 350 °C and 10 min, more than 98% of Cr was found in its trivalent form in the solid residue, allowing us to obtain clean biofuels

Valorisation of Cr-rich solid residue

Possible options could include leaching with acid solutions or extraction with solvents followed by chemical precipitation for selective recovery of Cr in the form of basic chromium sulphate, a valuable product for the tanning process.

Cr present in the solid residue could represent a substitute for the chromite ore, which is a raw material essential to produce HCferrochrome alloy

Chemical composition of the slag from the production of the HC-FeCr alloy.

Chemical composition (%, w/w)	Slag from HC-FeCr production		
	Simulation	Experiment	
SiO ₂	43.90	41.75	
CaO	37.35	36.38	
Al ₂ O ₃	18.66	11.88	
MgO	-	5.53	
MnO	-	0.08	
FeO	-	0.31	
Сг ₂ О ₃	-	0.30	
P ₂ O ₅		0.02	

Elemental analysis of the HC-FeCr alloy obtained by carbothermal reduction of the ashes from leather shaving incineration (ALSI).

Element (%, w/w)	HC-FeCr alloy			
	Simulation	Experiment	Specification	
Cr	55.20	50.31	>50	
С	7.96	7.63	6-9	
Si	8.11	2.50	<5	
S	-	0.04	< 0.03	
P	-	0.03	< 0.04	

In Alves et al. 2012 it was produced, per each 100 g of leather ashes 58.5 g of HC-FeCr alloy and 56.3 g of slag. The metallurgical recovery of chromium as HC-FeCr alloy in relation to the initial chromium concentration was 99.1%

Yan, K., Liu, Z., Li, Z., Y, R., Guo, F., Xu, Z. Selective separation of chromium from sulphuric acid leaching solutions of mixed electroplating sludge using phosphate precipitation. *Hydrometallurgy* 2019, 186, 42–49.

Alves, C. R.; Keglevich de Buzin, P. J. W.; Heck, N. C.; Schneider, I. A. H. Utilization of ashes obtained from leather shaving incineration as a source of chromium for the production of HC-FeCr alloy. *Miner. Eng.* 2012, *29*, 124–126.

Leather industry	Tannery sludge	Sludge production	Sludge treatment	Conclusions
	Re	Operating conditions: Reaction time = 0–60 min eaction temperature = 300°C and 350°C Reaction pressure = 200 bar		
	Bio-crude yield (dry and free ash basis)	Bio-crude chemical composition	Metal speciation	Cr oxidation
HTL on sewage sludge in a 500mL batch reactor	$Y^{dafb}_{bio-crude} = 29.5\%$ (10 min – 350°C) ER = 44.1% (HHV=30 MJ/kg)	Mainly composed by aliphatic compounds and in minor percentage of amines, alcohols and aromatic compounds Reduced concentration of inorganic elements	Inorganic elements concentrated in the solid residue, with values in the bio-crude up to about 3 orders of magnitude lower with respect to the other co- products.	Prevented

Thank you for your kind attention

roberto.solimene@stems.cnr.it

Istituto di Scienze e Tecnologie per l'Energia e la Mobilità Sostenibili