

Waste biorefinery technologies for accelerating sustainable energy processes

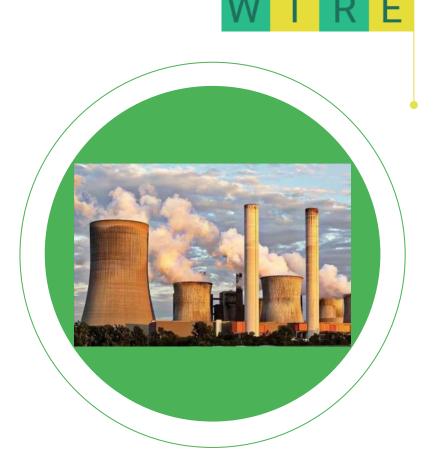
Concentrated Solar Thermal Systems Integration into Thermochemical Processes: Examples and Opportunities

Dr. Nikolaos I. Tsongidis November 24, 2023

Contents

• The challenge & the proposed solution

- What is CST
- Types of CST systems & statistics
- Examples of CST applications
- CERTH introduction
- ARTEMIS Lab CST infrastructure & current CST projects



The challenge

Depletion of fossil fuels

Greenhouse gases (mainly CO₂) intensifying environmental impact

Energy security issues

The proposed solution

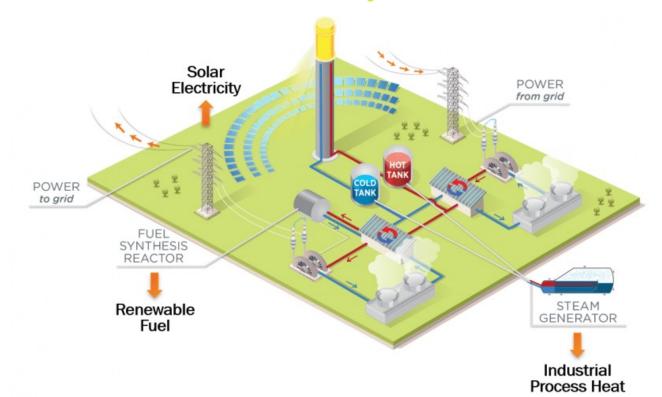
Concentrated solar thermal power (CST or CSP) – what is it

CSP technologies use mirrors or lenses to reflect and concentrate **sunlight** onto a receiver. The energy from the concentrated sunlight **heats** a high temperature fluid in the receiver

Source: U.S. DOE

The proposed solution

Source: U.S. DOE


Concentrated solar thermal power (CST or CSP) – what is it

This **heat** - also known as **thermal energy** - can be used to spin a turbine or power an engine to generate electricity. It can also be used in a variety of industrial applications, like water desalination, enhanced oil recovery, food processing, chemical production, and mineral processing

A typical CSP plant

Source: U.S. DOE; <u>https://www.energy.gov/eere/solar/concentrating-solar-thermal-power-basics</u>

F

The proposed solution

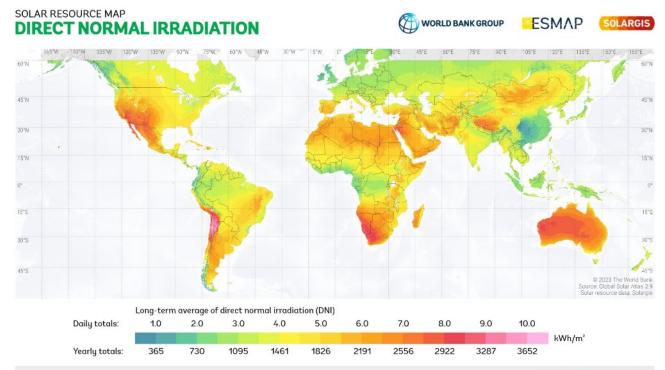
Concentrated solar thermal power (CST or CSP) - uses

- Electricity Generation
- Solar Heat for Industrial Processes (SHIP)
- District Heating
- > Thermal Energy Storage
- Energy carriers* production

* Essentially any means of energy (incl. solar fuels, e.g., H_2) that can be stored, transported and used as a substitute for conventional fuels

The proposed solution

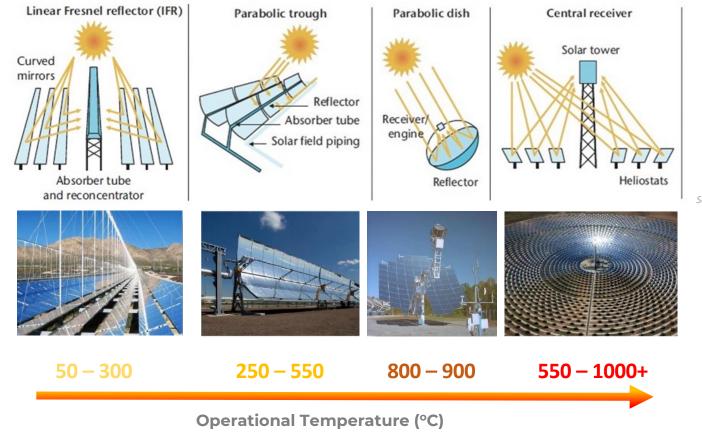
Concentrated solar thermal power (CST or CSP) – challenges addressed


- Mitigates climate change
- Diversifies the energy mix
- Addresses intermittency in RE
- Provides dispatchable power
- > Leads to sustainable & resilient energy future

DNI World map

W I R E

This map is published by the World Bank Group, funded by ESMAP, and prepared by Solargis. For more information and terms of use, please visit http://globalsolaratlas.info.

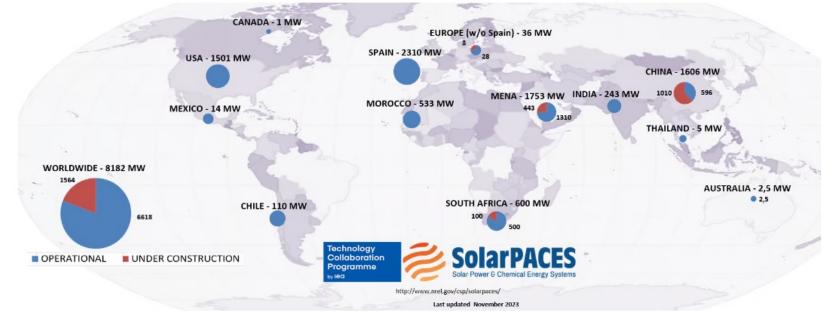

Source: World Bank Group

In-principle suitable areas typical DNI > 1500 kWh/m²

CERTH CENTRE FOR RESEARCH & TECHNOLOGY HELLAS

CST system types

W I R E

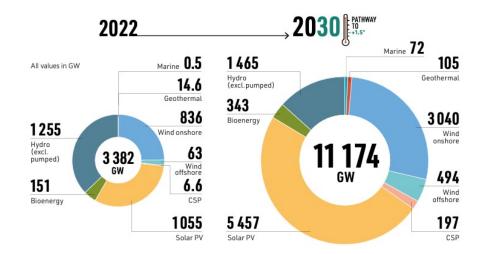

Source: U.S. DOE

10

8.2 GW

Total capacity of installed and under construction CSP plants

CSP projects around the World



Source: SolarPACES

⊢

CSP capacity projection

Source: IRENA report on COP28UAE

Notes: CSP = concentrated solar power; GW = gigawatt; PV = photovoltaic; VRE = variable renewable energy. Bioenergy includes biogas, biomass waste and biomass solid.

CSP capacity to raise from 6.6 GW (2022) up to **197 GW** by 2030

Examples of CST applications

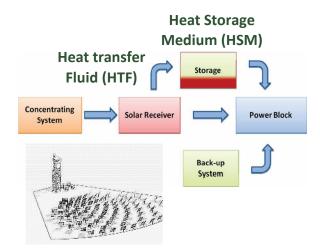
Thermal Energy Storage

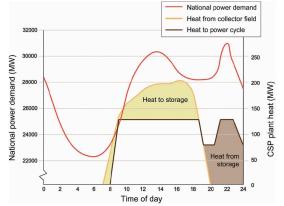
- **Elemental Sulphur Cycle**
- Hydrothermal Liquefaction of Residual Biomass

Examples of CST applications

Thermal Energy Storage

Elemental Sulphur Cycle


Hydrothermal Liquefaction of Residual Biomass



Thermal Energy Storage (TES) concept

CSP technologies main challenge: intermittence of solar energy \rightarrow Energy storage

 \checkmark Power block operation prolonged during off-sun conditions

Source: Denholm et al., Overgeneration from Solar Energy in California: A Field Guide to the Duck Chart, NREL/TP-6A20-65023 Technical Report (2015)

- TES categories: i) sensible heat; ii) latent heat; iii) thermochemical heat
- Exploitation of selected reversible chemical reactions
 - ✓ High energy density potential

Examples of CST applications

Thermal Energy Storage

Elemental Sulphur Cycle

Hydrothermal Liquefaction of Residual Biomass

Elemental Sulphur Cycle

W I R E

Reaction		Temperature (°C)	ΔH (kJ/mol)	
1a 1b	Sulphuric Acid Decomposition	$H_2SO_{4(aq)} \rightarrow SO_{3(g)} + H_2O_{(g)}$ $SO_{3(g)} \rightarrow SO_{2(g)} + 0.5 \cdot O_{2(g)}$	450 – 500 700 – 900	560
2	Disproportionation	$2 \cdot H_2O_{(l)} + 3 \cdot SO_{2(g)} \rightarrow 2 \cdot H_2SO_{4(aq)} + S_{(s)}$	700 – 900 50 – 200	-260
3	Sulphur Combustion	$S_{(I)} + O_{2(g)} \rightarrow SO_{2(g)}$	500 – 1500	-300

Technology	Energy Density (kJ/kg)
Hydrogen	141,886
Gasoline	47,357
Sulphur	12,500
Lithium Ion Battery	580
Molten Salt	282
Water Dam (100 m)	1

✤ Same step used for H₂ production: Sulphur-Iodine (SI) and Hybrid Sulphur (HyS) cycles

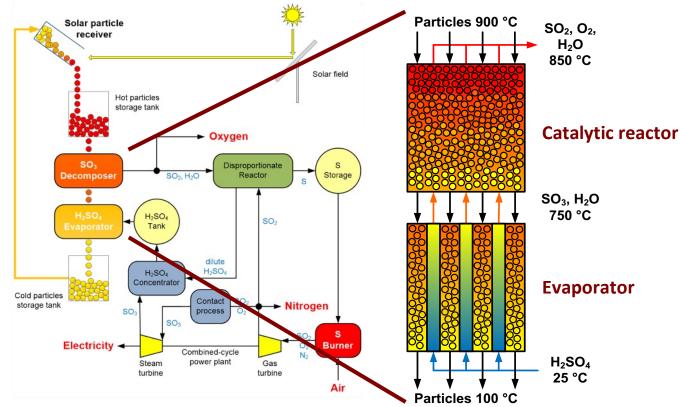
Elemental Sulphur Cycle

Sulphur-based H₂ Production Reactions

Sulphur-Iodine Cycle

Reaction			Temperature (°C)
1a	Sulphuric Acid Decomposition	$H_2SO_{4(aq)} \rightarrow SO_{3(g)} + H_2O_{(g)}$	450 - 500
1b	Suprune Acia Decomposition	$SO_{3(g)} \rightarrow SO_{2(g)} + 0.5 \cdot O_{2(g)}$	700 – 900
2	Bunsen reaction	$SO_{2(g)} + 2H_2O_{(g)} + I_{2(g)} \rightarrow H_2SO_{4(g)} + 2HI_{(g)}$	~120
3	Hydriodic acid decomposition reaction	$2\mathrm{HI}_{(\mathrm{g})} \mathrm{H}_{2(\mathrm{g})} + \mathrm{I}_{2(\mathrm{g})}$	300 - 450

Hybrid Sulphur Cycle


RESEARCH & TECHNOLOGY HELLAS

	Temperature (°C)		
1a	Sulphuric Acid Decomposition	$H_2SO_{4(aq)} \rightarrow SO_{3(g)} + H_2O_{(g)}$	450 - 500
1b		$SO_{3(g)} \rightarrow SO_{2(g)} + 0.5 \cdot O_{2(g)}$	700 – 900
2	Electrolysis	$SO_{2(aq)} + 2H_2O_{(I)} \rightarrow H_2SO_{4(aq)} + H_{2(g)}$	80 - 120

19

Elemental Sulphur Cycle

W I R E

Examples of CST applications

Thermal Energy Storage

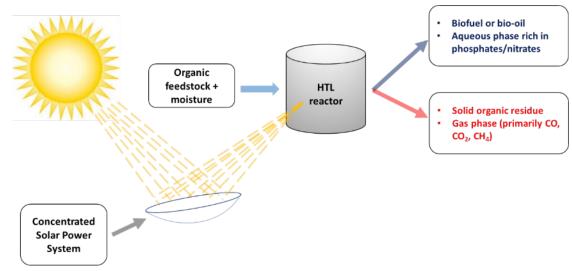
Elemental Sulphur Cycle

Hydrothermal Liquefaction of Residual Biomass

Hydrothermal Liquefaction of residual biomass

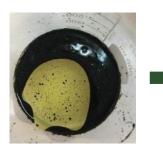
Conventional HTL Organic feedstock + moisture
+ moisture
+ Solid organic residue Conventional HTL
- Biofuel or bio-oil - Aqueous phase rich in phosphates/nitrates
- Solid organic residue - Gas phase (primarily CO, CO₂, CH₄)

Thermochemical conversion of organic waste into added value products


Suitable technique for organic waste/byproducts with high moisture → ideal for agrifood/agricultural waste

- Treatment at 250 500°C & 50 250 bar
- Use of a reducing gas and (optionally) a catalyst
- Mostly water (moisture) used as solvent in its subcritical/supercritical condition

Hydrothermal Liquefaction of residual biomass


Solar-aided HTL

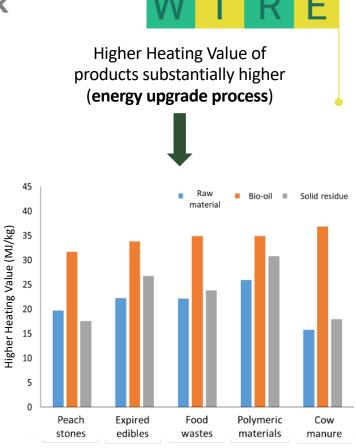
- Process thermal needs covered from a concentrated solar power system
- Linear Fresnel reflectors (50 300°C) or Parabolic Trough collectors (250 >400°C)
- Ideal for operation at off-grid/remote areas

Indicative lab-scale results per feedstock

Feed	Maximum % yield to bio-oil	Solvent to separate oily from aqueous phase (Yes/No)
Plant oils	84.3	Νο
Polypropylene	53.9	No
Polymeric materials	39.2	Yes
Cow manure	37.8	Yes
Peach stones	16.4	Yes
Expired edible matter	10.2	Yes
Food waste	8.8	Yes

Aqueous phase + Bio-oil

REFOR RESEARCH & TECHNOLOGY HELLAS


CERTH

Aqueous Bio-oil phase

Gaseous product for analysis

24

The Center for Research and Technology Hellas (CERTH)

14th in Europe

W I R E

- Founding year: 2000
- **1500+** employees (260+ experienced researchers)
- > Budget ~55 M€ in 2022:

9% state funding,

76% European & National research projects,

15% industrial contracts

> 18 spin-offs

FOR RESEARCH & TECHNOLOGY HELLAS

CPERI Information Chemical Technologies Institute (ITI) Energy Resources Hellenic Institute of Transport (HIT) Institute of Applied **Biosciences** (INAB) and Agri-Technology 1st in Greece

The Center for Research and Technology Hellas (CERTH)

- Founding year: 2000
- **1500+** employees (260+ experienced researchers)
- > Budget ~55 M€ in 2022:

9% state funding,

76% European & National research projects,

15% industrial contracts

> 18 spin-offs

OR RESEARCH & TECHNOLOGY HELLAS

CERTH

1st in Greece

14th in Europe

The Chemical Process & Energy Resources Institute (CPERI) at a glance

Collaborations

9			
Over 35 years of excellence, innovation, expansion and growth	1985 Foundation Year	3 Locations	324 Employees
12 M€/year Competitive Grants	> 120/year Publications	> 200 M€ Equipment	> 400 Collaboratio
	> 20,000 Citations	CPERI Brand Name: Low Carbon E Technologies	

27

CPERI Research areas

Research areas

- Clean Energy (Deep decarbonization of energy-intensive industries, Energy storage technologies, Development of novel zero/low-carbon fuels and chemicals, Carbon capture storage and utilization, Renewable energy and hydrogen technologies)
- **Climate and Environment** (Clean transport/electrificatior of the transport system, Environmental technologies Water and waste-water management)
- **Sustainable development** (Just transition development plan, Circular economy, Polymers production and characterization)
- **Bioengineering/Biomedicine** (Development of biomaterials with application in the health sector, Advanced hybrid biotechnological applications, biosensors/biodevices, Biochemical process design for energy, materials and environmental applications)

ARTEMIS Lab at a glance

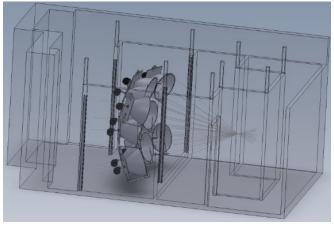
- > Optimum integration of the green transformation of industrial applications
- Address the relevant social challenges and priorities of the National and European research and technology strategy

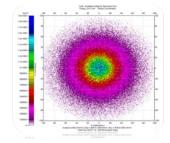
Core Scientific Objectives

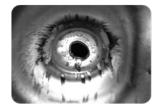
- > Materials and subsystems for production of energy carriers from solar-thermal/thermochemical processes
- > Hydrogen technologies
- Combustion processes and emission control technologies
- > Simulation of physical, chemical, biological and biochemical processes
- > Aerosol technologies and methods of exposure/assessment of the impact of particles' dispersion in biological systems

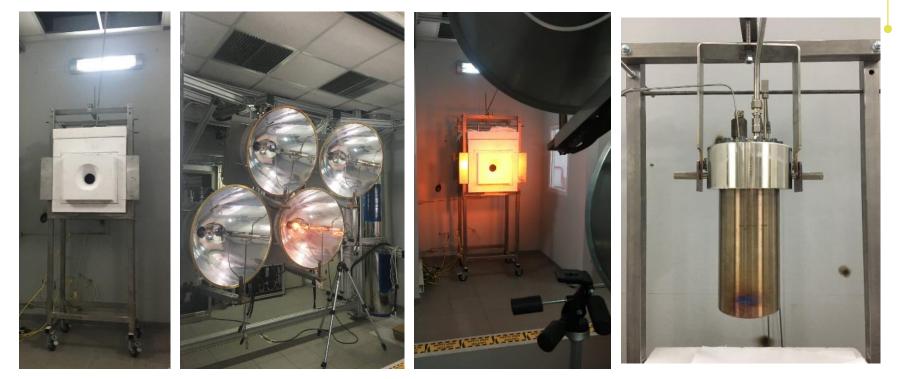
ARTEMIS Lab: Infrastructure

- Material synthesis and characterization units
- Battery lab
- Test rigs for the development and evaluation of membranes (ceramic, polymeric, hybrid)
- Gas analyzers (IR, mass spectrometers, gas chromatograph, sensors) & Portable analyzers
- Particulate emission measurements (number and mass basis) and size classification set-ups
- High pressure (1-350 atm) and temperature test rigs
- > IR-furnaces & Split tube high temperature furnaces
- Foam burner lab-scale rig
- Biomass pyrolysis lab-scale unit
- Biomass gasification pilot plant
- Heavy duty and Light duty engine test cells
- > 3 engine test cells
- Solar simulator, Solar furnace & Parabolic Trough Collectors
- Computational infrastructure
- Small Bio lab




Indoor high-flux solar simulator




Solar-like Concentrated Radiation

ESEARCH & TECHNOLOGY HELLAS

- Novel research for solar chemistry, solar fuels & solar receiver designs
- Accelerated aging of materials, material properties, thermal shocks

Indoor high-flux solar simulator

Lab-scale HTL reactor coupled with the solar simulator

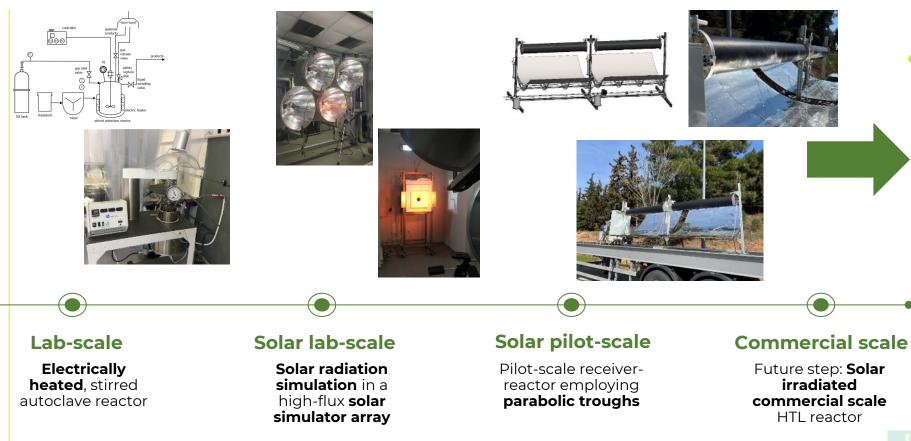
8-10% bio-oil yield increase using the Solar Simulator (higher heating rates cf. electric heater)

Solar furnace

- Platform for testing solar chemistry related receiver-reactors & materials
- First of its kind in Greece; to be completed @end 2023
- Nominal power: 50 kW_{th}

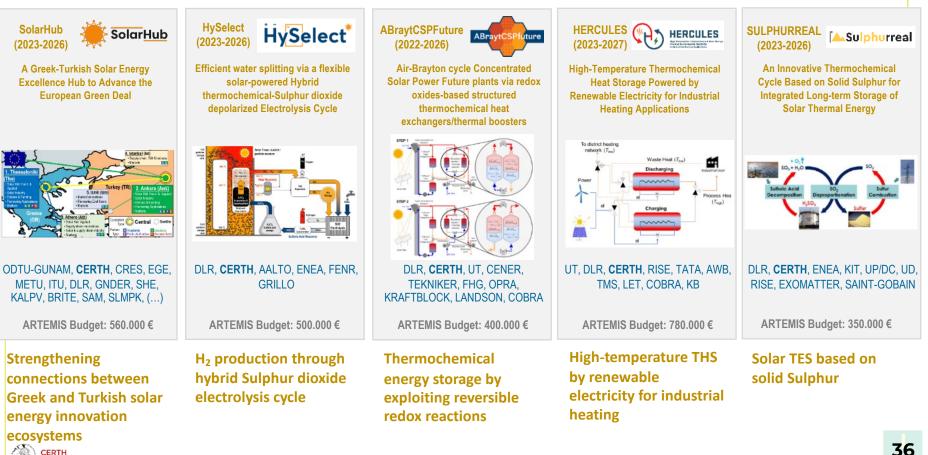
FOR RESEARCH & TECHNOLOGY HELLAS

Ø


Mobile solar HTL semi-pilot plant WIRE

- Design and construction of two modular 6 L tubular reactors
- Parabolic troughs as heating means; Dedicated sun tracking system
- A heat transfer fluid surrounds the reactor for improved heat conductivity
- Successful proof of concept operation; Experimental campaign underway

ARTEMIS HTL infrastructure developmental path



CERTH CENTRE FOR RESEARCH & TECHNOLOGY HELLAS

ARTEMIS Current CST-related Research Projects

E FOR RESEARCH & TECHNOLOGY HELLAS

Dr. Nikolaos Tsongidis ntsongid@certh.gr

ARTEMIS Lab. | Advanced Renewable Technologies & Environmental Materials in Integrated Systems CPERI | CERTH

